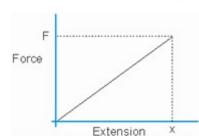

Name:			

Elastic Potential Energy SPH4C

Hooke's Law: The stretch or compression of an elastic

device (e.g. a spring) is _____


to the _____:

The constant ____ is called the ____ constant or

force constant. It has units of

and is the _____ of the line in a force-extension graph.

Example 1:

A student stretches a spring 1.5 cm horizontally by applying a force of magnitude 0.18 N. Determine the force constant of the spring.

The force stretching or compressing a spring

is doing _____ on a spring, increasing

its _____ energy.

Note that this force is

but increases linearly from 0 to kx.

The average force on the spring is $\frac{1}{2}kx$, so:

$$W = F \Delta d$$
 =

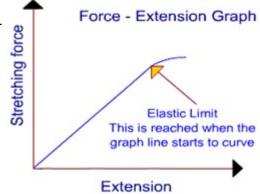
This is the elastic potential energy _____

Example 2:

An apple of mass 0.10 kg is suspended from a vertical spring with spring constant 9.6 N/m. How much elastic potential is stored in the spring if the apple stretches the spring 20.4 cm?

Example 2 Follow-Up: How much gravitational potential energy did the apple lose?

An _____ spring is one that obeys Hooke's Law – within compression/stretching limits.


Beyond those limits the spring may _____.

More Practice

A spring is stretched 0.20 cm by a force of 2.1 N.

(a) What is the spring constant of the spring?

(b) What is the elastic potential stored in the spring?

